Abstract

Summary The purpose of this paper is to provide a critical discussion on real‐time estimation of dynamic generalized linear models. We describe and contrast three estimation schemes, the first of which is based on conjugate analysis and linear Bayes methods, the second based on posterior mode estimation, and the third based on sequential Monte Carlo sampling methods, also known as particle filters. For the first scheme, we give a summary of inference components, such as prior/posterior and forecast densities, for the most common response distributions. Considering data of arrivals of tourists in Cyprus, we illustrate the Poisson model, providing a comparative analysis of the above three schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.