Abstract

The impact of using phase functions for spherical droplets and hexagonal ice crystals to analyze radiances from cirrus is examined. Adding-doubling radiative transfer calculations are employed to compute radiances for different cloud thicknesses and heights over various backgrounds. These radiances are used to develop parameterizations of top-of-the-atmosphere visible reflectance and IR emittance using tables of reflectances as a function of cloud optical depth, viewing and illumination angles, and microphysics. This parameterization, which includes Rayleigh scattering, ozone absorption, variable cloud height, and an anisotropic surface reflectance, reproduces the computed top-of-the-atmosphere reflectances with an accruacy of +/- 6 percent for four microphysical models: 10-micron water droplet, small symmetric crystal, cirrostratus, and cirrus uncinus. The accuracy is twice that of previous models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.