Abstract

Boolean networks are important models of gene regulatory networks. Such models are sometimes built from: (1) a gene interaction graph and (2) a set of biological constraints. A gene interaction graph is a directed graph representing positive and negative gene regulations. Depending on the biological problem being solved, the set of biological constraints can vary, and may include, for example, a desired set of stationary states. We present a symbolic, SAT-based, method for inferring synchronous Boolean networks from interaction graphs augmented with constraints. Our method first constructs Boolean formulas in such a way that each truth assignment satisfying these formulas corresponds to a Boolean network modeling the given information. Next, we employ a SAT solver to obtain desired Boolean networks. Through a prototype, we show results illustrating the use of our method in the analysis of Boolean gene regulatory networks of the Arabidopsis thaliana root stem cell niche.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call