Abstract

In quantum physics all experimental information is discrete and stochastic. But the values of physical quantities are considered to depict definite properties of the physical world. Thus physical quantities should be identified with mathematical variables which are derived from the experimental data, but which exhibit as little randomness as possible. We look for such variables in two examples by investigating how it is possible to arrive at a value of a physical quantity from intrinsically stochastic data. With the aid of standard probability calculus and elementary information theory, we are necessarily led to the quantum theoretical phases and state vectors as the first candidates for physical quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.