Abstract

The Ising spin glass is a one-parameter exponential family model for binary data with quadratic sufficient statistic. In this paper, we show that given a single realization from this model, the maximum pseudolikelihood estimate (MPLE) of the natural parameter is $\sqrt{a_{N}}$-consistent at a point whenever the log-partition function has order $a_{N}$ in a neighborhood of that point. This gives consistency rates of the MPLE for ferromagnetic Ising models on general weighted graphs in all regimes, extending the results of Chatterjee (Ann. Statist. 35 (2007) 1931–1946) where only $\sqrt{N}$-consistency of the MPLE was shown. It is also shown that consistent testing, and hence estimation, is impossible in the high temperature phase in ferromagnetic Ising models on a converging sequence of simple graphs, which include the Curie–Weiss model. In this regime, the sufficient statistic is distributed as a weighted sum of independent $\chi^{2}_{1}$ random variables, and the asymptotic power of the most powerful test is determined. We also illustrate applications of our results on synthetic and real-world network data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.