Abstract

SummaryGeneralized linear mixed models are widely used for describing overdispersed and correlated data. Such data arise frequently in studies involving clustered and hierarchical designs. A more flexible class of models has been developed here through the Dirichlet process mixture. An additional advantage of using such mixture models is that the observations can be grouped together on the basis of the overdispersion present in the data. This paper proposes a partial empirical Bayes method for estimating all the model parameters by adopting a version of the EM algorithm. An augmented model that helps to implement an efficient Gibbs sampling scheme, under the non‐conjugate Dirichlet process generalized linear model, generates observations from the conditional predictive distribution of unobserved random effects and provides an estimate of the average number of mixing components in the Dirichlet process mixture. A simulation study has been carried out to demonstrate the consistency of the proposed method. The approach is also applied to a study on outdoor bacteria concentration in the air and to data from 14 retrospective lung‐cancer studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.