Abstract
Abstract. Estimation of parameters in diffusion models is investigated when the observations are integrals over intervals of the process with respect to some weight function. This type of observations can, for example, be obtained when the process is observed after passage through an electronic filter. Another example is provided by the ice‐core data on oxygen isotopes used to investigate paleo‐temperatures. Finally, such data play a role in connection with the stochastic volatility models of finance. The integrated process is not a Markov process. Therefore, prediction‐based estimating functions are applied to estimate parameters in the underlying diffusion model. The estimators are shown to be consistent and asymptotically normal. The theory developed in the paper also applies to integrals of processes other than diffusions. The method is applied to inference based on integrated data from Ornstein–Uhlenbeck processes and from the Cox–Ingersoll–Ross model, for both of which an explicit optimal estimating function is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.