Abstract

This article considers multinomial data subject to misclassification in the presence of covariates which affect both the misclassification probabilities and the true classification probabilities. A subset of the data may be subject to a secondary measurement according to an infallible classifier. Computations are carried out in a Bayesian setting where it is seen that the prior has an important role in driving the inference. In addition, a new and less problematic definition of nonidentifiability is introduced and is referred to as hierarchical nonidentifiability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.