Abstract
The skew-Laplace distribution has been used for modelling particle size with point observations. In reality, the observations are truncated and grouped (rounded). This must be formally taken into account for accurate modelling, and it is shown how this leads to convenient closed-form expressions for the likelihood in this model. In a Bayesian framework, “noninformative” benchmark priors, which only require the choice of a single scalar prior hyperparameter, are specified. Conditions for the existence of the posterior distribution are derived when rounding and various forms of truncation are considered. The main application focus is on modelling microbiological data obtained with flow cytometry. However, the model is also applied to data often used to illustrate other skewed distributions, and it is shown that our modelling compares favourably with the popular skew-Student models. Further examples with simulated data illustrate the wide applicability of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.