Abstract
Time series of (small) counts are common in practice and appear in a wide variety of fields. In the last three decades, several models that explicitly account for the discreteness of the data have been proposed in the literature. However, for multivariate time series of counts several difficulties arise and the literature is not so detailed. This work considers Bivariate INteger-valued Moving Average, BINMA, models based on the binomial thinning operation. The main probabilistic and statistical properties of BINMA models are studied. Two parametric cases are analysed, one with the cross-correlation generated through a Bivariate Poisson innovation process and another with a Bivariate Negative Binomial innovation process. Moreover, parameter estimation is carried out by the Generalized Method of Moments. The performance of the model is illustrated with synthetic data as well as with real datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.