Abstract

This study introduces an FER-based machine learning framework for real-time QoE assessment in video streaming. This study’s aim is to address the challenges posed by end-to-end encryption and video advertisement while enhancing user QoE. Our proposed framework significantly outperforms the base reference, ITU-T P.1203, by up to 37.1% in terms of accuracy and 21.74% after attribute selection. Our study contributes to the field in two ways. First, we offer a promising solution to enhance user satisfaction in video streaming services via real-time user emotion and user feedback integration, providing a more holistic understanding of user experience. Second, high-quality data collection and insights are offered by collecting real data from diverse regions to minimize any potential biases and provide advertisement placement suggestions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.