Abstract

In biomedical data analysis, inferring the cause of death is a challenging and important task, which is useful for both public health reporting purposes, as well as improving patients' quality of care by identifying severer conditions. Causal inference, however, is notoriously difficult. Traditional causal inference mainly relies on analyzing data collected from experiment of specific design, which is expensive, and limited to a certain disease cohort, making the approach less generalizable. In our paper, we adopt a novel data-driven perspective to analyze and improve the death reporting process, to assist physicians identify the single underlying cause of death. To achieve this, we build state-of-the-art deep learning models, convolution neural network (CNN), and achieve around 75% accuracy in predicting the single underlying cause of death from a list of relevant medical conditions. We also provide interpretations for the black-box neural network models, so that death reporting physicians can apply the model with better understanding of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.