Abstract

Understanding how ecological communities assemble is an urgent research priority. In this study, we used a community ecology approach to examine how ecological and evolutionary processes shape biodiversity patterns of plant pathogenic fungi, Fusarium graminearum and F. asiaticum. High-throughput screening revealed that the isolates had a wide range of phenotypic variation in stress tolerance traits. Net Relatedness Index (NRI) and Nearest Taxon Index (NTI) values were computed based on stress-tolerant distance matrices. Certain local regions exhibited positive values of NRI and NTI, indicating phenotypic clustering within the fungal communities. Competition assays of the pooled strains were conducted to investigate the cause of clustering. During stress conditions and wheat colonization, only a few strains dominated the fungal communities, resulting in reduced diversity. Overall, our findings support the modern coexistence theory that abiotic stress and competition lead to phenotypic similarities among coexisting organisms by excluding large, low-competitive clades. We suggest that agricultural environments and competition for host infection lead to locally clustered communities of plant pathogenic fungi in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.