Abstract
The plasma membrane contains distinct domains that are characterized by a high concentration of sphingolipids and cholesterol. These membrane microdomains also referred to as rafts, seem to be intimately involved in transmembranous signaling and often initiate interactions of pathogens and the host cell membranes. Here, we investigated the further reorganization of membrane rafts in cultured epithelial cells and ex vivo isolated nasal cells after infection with rhinoviruses. We demonstrate the formation of ceramide-enriched membrane platforms and large glycosphingolipid-enriched membrane domains and the co-localization of fluorochrome-labeled rhinoviruses with these membrane domains during attachment and uptake of human rhinovirus. Destruction of glycosphingolipid-enriched membrane domains blocked infection of human cells with rhinovirus. Furthermore, our studies indicate that the activation of the acid sphingomyelinase (ASM) is intrigued in the formation of ceramide- or GM1- enriched membrane platforms. Inhibition of the ASM reduces the number of ceramide-enriched platforms and glycosphingolipid-enriched membrane domains. These data reveal a critical role of the ASM for the formation of membrane platforms and infection of human cells with rhinoviruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.