Abstract

BackgroundInfections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini. The molecular mediators underlying the infection with these parasites and cancer remain unclear. Although carcinogenesis is a multistep process, we have postulated that these parasites release metabolites including oxysterols and estrogen-like metabolites that interact with host cell DNA. How and why the parasite produce/excrete these metabolites remain unclear. A gene encoding a CYP enzyme was identified in schistosomes and opisthorchiids. Therefore, it is reasonable hypothesized that CYP 450 might play a role in generation of pro-inflammatory and potentially carcinogenic compounds produced by helminth parasites such as oxysterols and catechol estrogens. Here, we performed enzymatic assays using several isoforms of CYP 450 as CYP1A1, 2E1 and 3A4 which are involved in the metabolism of chemical carcinogens that have been associated with several cancer. The main aim was the analysis of the role of these enzymes in production of helminth-associated metabolites and DNA-adducts.MethodThe effect of cytochrome P450 enzymes CYP 1A1, 2E1 and 3A4 during the interaction between DNA, glycocholic acid and taurochenodeoxycholate sodium on the formation of DNA-adducts and metabolites associated with urogenital schistosomiasis (UGS) and opisthorchiasis was investigated in vitro. Liquid chromatography/mass spectrometry was used to detect and identify metabolites.Main findingsThrough the enzymatic assays we provide a deeper understanding of how metabolites derived from helminths are formed and the influence of CYP 450. The assays using compounds similar to those previously observed in helminths as glycocholic acid and taurochenodeoxycholate sodium, allowed the detection of metabolites in their oxidized form and their with DNA. Remarkably, these metabolites were previously associated with schistosomiaisis and opisthorchiasis. Thus, in the future, it may be possible to synthesize this type of metabolites through this methodology and use them in cell lines to clarify the carcinogenesis process associated with these diseases.Principal conclusionsMetabolites similar to those detected in helminths are able to interact with DNA in vitro leading to the formation of DNA adducts. These evidences supported the previous postulate that imply helminth-like metabolites as initiators of helminthiases-associated carcinogenesis. Nonetheless, studies including these kinds of metabolites and cell lines in order to evaluate its potential carcinogenic are required.

Highlights

  • Infections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini

  • Principal conclusions: Metabolites similar to those detected in helminths are able to interact with deoxyribonucleic acid (DNA) in vitro leading to the formation of DNA adducts

  • These helminths produce and excrete metabolites, including estrogens and oxysterols, that appear capable of oxidation of host DNA, in turn leading to the formation of depurinating DNA adducts and mutations in the genome of adjacent tissues acting as initiators of carcinogenesis [3,4,5,6,7]

Read more

Summary

Introduction

Infections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini. The chronic infection with these helminths is recognized by International Agency for Research on Cancer (IARC) as a definitive cause of cancer [2] These helminths produce and excrete metabolites, including estrogens and oxysterols, that appear capable of oxidation of host DNA, in turn leading to the formation of depurinating DNA adducts and mutations in the genome of adjacent tissues acting as initiators of carcinogenesis [3,4,5,6,7]. The high-performance liquid chromatography coupled with mass spectrometry (LC-MS/MS) analysis of urine from individuals with urogenital schistosomiasis (UGS) and bladder cancer revealed the presence of specific metabolites which may represent biomarkers for diagnosis and prognosis of SCC [6] These metabolites were identified in developmental stages of S. haematobium and Opisthorchis viverrini [5,6,7,8]. These findings may support the inclusion of the infection with the liver fluke O. felineus as group 1 carcinogens by the IARC [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call