Abstract

Numerous studies have revealed a continuous increase in the worldwide incidence and prevalence of non-tuberculous mycobacteria (NTM) diseases, especially pulmonary Mycobacterium avium complex (MAC) diseases. Although it is not clear why NTM diseases have been increasing, one possibility is an increase of mycobacterial infection sources in the environment. Thus, in this review, we focused on the infection sources of pathogenic NTM, especially MAC. The environmental niches for MAC include water, soil, and dust. The formation of aerosols containing NTM arising from shower water, soil, and pool water implies that these niches can be infection sources. Furthermore, genotyping has shown that clinical isolates are identical to environmental ones from household tap water, bathrooms, potting soil, and garden soil. Therefore, to prevent and treat MAC diseases, it is essential to identify the infection sources for these organisms, because patients with these diseases often suffer from reinfections and recurrent infections with them. In the environmental sources, MAC and other NTM organisms can form biofilms, survive within amoebae, and exist in a free-living state. Mycobacterial communities are also likely to occur in these infection sources in households. Water distribution systems are a transmission route from natural water reservoirs to household tap water. Other infection sources include areas with frequent human contact, such as soil and bathrooms, indicating that individuals may carry NTM organisms that concomitantly attach to their household belongings. To explore the mechanisms associated with the global spread of infection and MAC transmission routes, an epidemiological population-wide genotyping survey would be very useful. A good example of the power of genotyping comes from M. avium subsp. hominissuis, where close genetic relatedness was found between isolates of it from European patients and pigs in Japan and Europe, implying global transmission of this bacterium. It is anticipated that whole genome sequencing technologies will improve NTM surveys so that the mechanisms for the global spread of MAC disease will become clearer in the near future. Better understanding of the niches exploited by MAC and its ecology is essential for preventing MAC infections and developing new methods for its effective treatment and elimination.

Highlights

  • Diseases caused by non-tuberculous mycobacteria (NTM) have global importance in the public health arena

  • The results showed the persistence of particular sequence types, e.g., Mycobacterium spp. (28.1% of total), while M. avium accounted for 30% of the mycobacterial biofilm samples

  • The global spread of pulmonary Mycobacterium avium complex (MAC) disease might be caused by human activities, as individuals carry MAC organisms that concomitantly attach to their belongings and their living environments

Read more

Summary

INTRODUCTION

Diseases caused by non-tuberculous mycobacteria (NTM) have global importance in the public health arena. Steep increases in the worldwide incidence and prevalence of these diseases are linked with the increasing numbers of patients with pulmonary Mycobacterium avium complex (MAC) disease in many countries. In these M. avium subspecies, MAH is considered the clinically most important one for humans, and it often causes a chronic pulmonary disease. Other M. avium subspecies are well-known pathogens; MAP causes Johne’s disease, a chronic granulomatous enteritis that principally affects ruminants, and MAA and MAS have mostly been isolated from birds with tuberculosis (TB)-like disease. Verification of infection sources requires the identification of an identical genotype between clinical and environmental isolates It requires proof of the transmission routes of pathogens from the environment to the patients. These reports clearly indicate that MAC is the main driver for the rise in pulmonary NTM diseases

A Substantial Number of Pulmonary NTM
Findings
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.