Abstract

Mycobacterium avium subspecies hominissuis (MAH) is the most common agent causing nontuberculous mycobacterial disease in humans. It mainly causes chronic and slowly progressive pulmonary disease (PD), which requires a long-term treatment and allows opportunistic co-infection by common pulmonary pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus spp., thereby resulting in alteration of host immune response. In the present study, we investigated the phenotypical and functional alterations of dendritic cells (DCs), a bridge antigen-presenting cell between innate and adaptive immunity, following MAH infection in response to various toll-like receptor (TLR) agonists mimicking co-infection conditions, along with subsequent T cell response. Interestingly, MAH-infected DCs produced interleukin (IL)-10 significantly and decreased the level of IL-12p70 in response to Poly I:C and LPS, although not so in response to Pam3CSK4, imiquimod, or CpG oligodeoxynucleotide, thereby indicating that the TLR3 and TLR4 agonists functionally altered MAH-infected DCs toward a tolerogenic phenotype. Moreover, IL-10-producing tolerogenic DCs were remarkably induced by MAH and P. aeruginosa co-infection. To precisely elucidate how these TLR agonists induce tolerogenic DCs upon MAH infection, we sought to clarify the major mechanisms involved, using LPS, which caused the greatest increase in IL-10 production by the TLR agonists. Increased IL-10 stimulated the creation of tolerogenic DCs by significantly reducing MHC class II expression and MHC class II-antigen presentation, eventually inhibiting CD4+ T cell proliferation, along with decreased IFN-γ and IL-2. The tolerogenic phenotypes of MAH/LPS-treated DCs were restored by anti-IL-10 neutralization, validating the induction of tolerogenicity by IL-10. Interestingly, IL-10-producing-tolerogenic DCs were observed after infection with live MAH, rather than with inactivated or dead MAH. In addition, TLR2−/− and TLR4−/− DCs confirmed the association of IL-10 production with TLR2 and TLR4 signaling; IL-10 production synergistically increased when both TLR4 and TLR2 were involved. Expression of Cox2 and PGE2 increased along with IL-10 while that of IL-10 was inhibited by their selective inhibitors celecoxib and anti-EP2 antibody, respectively. Thus, the tolerogenic phenotypes of MAH/LPS-treated DCs were proven to be induced by Cox-2/PGE2-dependent EP2 signaling as the main mechanism. These findings may provide important clues that the tolerogenic cascade in MAH-infected DCs induced by TLR 4 signaling can alter host immune response.

Highlights

  • Mycobacterium avium subspecies hominissuis (MAH), which belongs to the M. avium complex (MAC), is emerging as an important pathogen in pulmonary diseases (PD) caused by nontuberculous mycobacterial (NTM) infection in humans, despite the decreasing incidence of tuberculosis globally (Prevots and Marras, 2015; Meier et al, 2017)

  • To investigate the role of excessive IL-10 production in Dendritic cells (DCs) co-infected with MAH and Toll-like receptors (TLRs)-stimulations, the method in Figure 1C was selected for further investigation

  • We confirmed that the remarkable enhancement in IL-10 production in MAH-infected DCs exposed to LPS was not due to cytotoxicity, since there was no difference in Annexin V/PI positive cells and LDH release (Figures 1D,E)

Read more

Summary

Introduction

Mycobacterium avium subspecies hominissuis (MAH), which belongs to the M. avium complex (MAC), is emerging as an important pathogen in pulmonary diseases (PD) caused by nontuberculous mycobacterial (NTM) infection in humans, despite the decreasing incidence of tuberculosis globally (Prevots and Marras, 2015; Meier et al, 2017). P. aeruginosa was reported to be more frequently isolated during MAC treatment (75%) or after MAC sputum conversion (93.1%) than during MAC-positive sputum culture (25.7%) (Fujita et al, 2014). This implies that P. aeruginosa may be able to infect intermittently, but the most P. aeruginosa infection can affect chronically patients with MAC (Fujita et al, 2014). Chronic co-infection of P. aeruginosa is known to be associated with a wide range of lesions in the lower lobe of lung and can affect lung function and disease severity (Fujita et al, 2014; Hsieh et al, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call