Abstract

Previously, we reported that the absence of the ataxia telangiectasia mutated (ATM) kinase, a critical DNA damage response (DDR) signaling component for double-strand breaks, caused no change in HCMV Towne virion production. Later, others reported decreased AD169 viral titers in the absence of ATM. To address this discrepancy, human foreskin fibroblasts (HFF) and three ATM(-) lines (GM02530, GM05823, and GM03395) were infected with both Towne and AD169. Two additional ATM(-) lines (GM02052 and GM03487) were infected with Towne. Remarkably, both previous studies' results were confirmed. However, the increased number of cell lines and infections with both lab-adapted strains confirmed that ATM was not necessary to produce wild-type-level titers in fibroblasts. Instead, interactions between individual virus strains and the cellular microenvironment of the individual ATM(-) line determined efficiency of virion production. Surprisingly, these two commonly used lab-adapted strains produced drastically different titers in one ATM(-) cell line, GM05823. The differences in titer suggested a rapid method for identifying genes involved in differential virion production. In silico comparison of the Towne and AD169 genomes determined a list of 28 probable candidates responsible for the difference. Using serial iterations of an experiment involving virion entry and input genome nuclear trafficking with a panel of related strains, we reduced this list to four (UL129, UL145, UL147, and UL148). As a proof of principle, reintroduction of UL148 largely rescued genome trafficking. Therefore, use of a battery of related strains offers an efficient method to narrow lists of candidate genes affecting various virus life cycle checkpoints. Human cytomegalovirus (HCMV) infection of multiple cell lines lacking ataxia telangiectasia mutated (ATM) protein produced wild-type levels of infectious virus. Interactions between virus strains and the microenvironment of individual ATM(-) lines determined the efficiency of virion production. Infection of one ATM(-) cell line, GM05823, produced large titer differentials dependent on the strain used, Towne or AD169. This discrepancy resolved a disagreement in the literature of a requirement for ATM expression and HCMV reproduction. The titer differentials in GM08523 cells were due, in part, to a decreased capacity of AD169 virions to enter the cell and traffic genomes to the nucleus. In silico comparison of the Towne, AD169, and related variant strains' genomes was coupled with serial iterations of a virus entry experiment, narrowing 28 candidate proteins responsible for the phenotype down to 4. Reintroduction of UL148 significantly rescued genome trafficking. Differential behavior of virus strains can be exploited to elucidate gene function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.