Abstract

Classical interpretation of cystic fibrosis (CF) lung disease pathogenesis suggests that infection initiates disease progression, leading to an exuberant inflammatory response, excessive mucus, and ultimately bronchiectasis. Although symptomatic antibiotic treatment controls lung infections early in disease, lifelong bacterial residence typically ensues. Processes that control the establishment of persistent bacteria in the CF lung, and the contribution of noninfectious components to disease pathogenesis, are poorly understood. To evaluate whether continuous antibiotic therapy protects the CF lung from disease using a ferret model that rapidly acquires lethal bacterial lung infections in the absence of antibiotics. CFTR (cystic fibrosis transmembrane conductance regulator)-knockout ferrets were treated with three antibiotics from birth to several years of age and lung disease was followed by quantitative computed tomography, BAL, and histopathology. Lung disease was compared with CFTR-knockout ferrets treated symptomatically with antibiotics. Bronchiectasis was quantified from computed tomography images. BAL was evaluated for cellular differential and features of inflammatory cellular activation, bacteria, fungi, and quantitative proteomics. Semiquantitative histopathology was compared across experimental groups. We demonstrate that lifelong antibiotics can protect the CF ferret lung from infections for several years. Surprisingly, CF animals still developed hallmarks of structural bronchiectasis, neutrophil-mediated inflammation, and mucus accumulation, despite the lack of infection. Quantitative proteomics of BAL from CF and non-CF pairs demonstrated a mucoinflammatory signature in the CF lung dominated by Muc5B and neutrophil chemoattractants and products. These findings implicate mucoinflammatory processes in the CF lung as pathogenic in the absence of clinically apparent bacterial and fungal infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.