Abstract

Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect's open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems.

Highlights

  • Pathogens transmitted by mosquitoes must traverse the insect’s open body cavity during their journey from the midgut to the salivary glands, and this obligate migration places them in direct contact with the insect’s circulatory and immune systems

  • We examined the physiological interactions between the mosquito immune and circulatory systems

  • We show that when mosquitoes are infected with bacteria or malaria parasites, mosquito immune cells migrate to the areas surrounding the valves of the heart

Read more

Summary

Introduction

Pathogens transmitted by mosquitoes must traverse the insect’s open body cavity (hemocoel) during their journey from the midgut to the salivary glands, and this obligate migration places them in direct contact with the insect’s circulatory and immune systems. When the heart contracts in the anterograde direction, hemolymph enters the lumen of the vessel through six pairs of incurrent ostia (valves) located in the anterior portion of abdominal segments 2 through 7 and exits through an excurrent opening located in the head region [2,3]. When the heart contracts in the retrograde direction, hemolymph enters the vessel through a single ostial pair located at the thoracoabdominal junction and exits through an excurrent opening located in the terminal abdominal segment. Variants of this arrangement are seen in all insects and similar systems are present in all arthropods [4], conclusively supporting its ancient origin

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call