Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the worldwide spread of coronavirus disease-2019 (COVID-19) since its emergence in 2019. Virus replication and infection dynamics after its deposition on the respiratory tissues require detailed studies for infection control. This study focused primarily on SARS-CoV-2 dynamics in the mucus layer of the nasal cavity and nasopharynx, based on coupled computational fluid-particle dynamics (CFPD) and host-cell dynamics (HCD) analyses. Considering the mucus milieu, we coupled the target-cell limited model with the convection-diffusion term to develop an improved HCD model. The infection dynamics in the mucus layer were predicted by a combination of the mucus flow field, droplet deposition distribution, and HCD. The effect of infection rate, β, was investigated as the main parameter of HCD. The results showed that the time series of SARS-CoV-2 concentration distribution in the mucus layer strongly depended on diffusion, convection, and virus production. β affected the viral load peak, its arrival time, and duration. Although the SARS-CoV-2 dynamics in the mucus layer obtained in this study have not been verified by appropriate clinical data, it can serve as a preliminary study on the virus transmission mode in the upper respiratory tract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.