Abstract

ABSTRACT Salmonella (S.) Infantis is the most common serovar in broilers and broiler meat in the European Union. In the field, fast-growing broilers are reported to be more affected than slow-growing and layer birds. The present study investigated the infection dynamics and immunological response of four chicken lines in the course of a S. Infantis infection. Two commercial chicken lines, Ross 308 and Hubbard ISA-JA-757, and two experimental chicken lines, specific pathogen free (SPF) layers and broilers, were infected at 2 days of age. Investigations focused on faecal shedding, bacterial colonization, humoral and cellular immune response. Ross and SPF broilers proved mainly as high shedders followed by Hubbard. SPF layers showed the least shedding. This is in agreement with the caecal colonization; SPF layers harboured significantly less bacteria. Systemic spread of S. Infantis to liver and spleen was highest in Ross broilers compared to the other lines. Spread of infection to in-contact birds, was noticed 5 days post infection in every line. Antibody response occurred in every chicken line from 21 days of age onwards. In contrast to the other chicken lines, significant differences in T cell subsets and monocytes/macrophages were found between infected and negative Hubbard birds at 7 days of age. Uninfected SPF birds had significantly higher immune cell counts than uninfected commercial birds, a fact important for future experimental settings. The results illustrate that the infection dynamics of S. Infantis is influenced by the chicken line resulting in a higher risk of transmission to humans from fast-growing broilers. RESEARCH HIGHLIGHTS Infection dynamics of Salmonella Infantis differs between chicken lines. Layers showed less faecal shedding and caecal colonization compared to broilers. Fast-growing broilers proved more susceptible than slow-growing broilers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.