Abstract

Agriculturally important grasses such as sugar cane (Saccharum sp.), rice (Oryza sativa), wheat (Triticum aestivum) sorghum (Sorghum bicolor), maize (Zea mays), Panicum maximum, Brachiaria spp., and Pennisetum purpureum contain numerous diazotrophic bacteria, such as, Acetobacter diazotrophicus, Herbaspirillum spp., Azospirillum spp. These bacteria do not usually cause disease symptoms in the plants with which they are associated and the more numerous of them, for example, Herbaspirillum spp. and A. diazotrophicus, are obligate or facultative endo-phytes that do not survive well (or at all) in native soil; these are thought to be spread from plant generation to plant generation via seeds, vegetative propagation, dead plant material, and possibly by insect sap feeders. By contrast, Azospirillum spp. are not wholly endophytic but are root-associated, soil-dwelling bacteria that are also often found within plants, probably entering host plants via seeds or via wounds/cracks at lateral root junctions. Endophytic diazotrophs have been isolated from a number of grasses in which significant biological N2 fixation (BNF) has been demonstrated, particularly Brazilian sugar cane varieties, but also in rice, maize, and sorghum. However, although the endophytic diazotrophs are held to be the causative agents of the observed BNF, direct evidence for this is lacking. Therefore, in this review we examine probable sites of bacterial multiplication and/or BNF within endophyte-containing grasses and discuss these in terms of potential benefits (or not) to both host plants and bacteria. In particular, we examine how potentially large numbers of bacteria, especially Herbaspirillum spp., A. diazotrophicus, and Azospirillum spp., can exist extracellularly within non-specialized (for symbiotic purposes) regions such as xylem vessels and intercellular spaces. The processes of infection and colonization of various grasses (particularly sugar cane) by diazotrophic endophytes are also described, and these are compared with those of important (nondiazotrophic) endophytic sugar cane pathogens such as Clavibacter xyli subsp. xyli and Xanthomonas albilineans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call