Abstract

Parasites are widespread in nature. Nevertheless, they have only recently been incorporated into food web studies and community ecology. Earlier studies revealed the large effects of parasites on food web network structures, suggesting that parasites affect food web dynamics and their stability. However, our understanding of the role of parasites in food web dynamics is limited to a few theoretical studies, which only assume parasite-induced mortality or virulence as a typical characteristic of parasites, without any large difference in terms of predation effects. Here, I present a food web model with parasites in which parasites change the mortality and interaction strengths of hosts by affecting host activity. The infected food web shows that virulence and infection rate have virtually no effect on food web stability without any difference in interaction strengths between susceptible and infected individuals. However, if predation rates are weakened through a restriction of the activity of infected individuals, virulence and infection rate can greatly influence stability: diseases with lower virulence and higher transmission rate tend to increase stability. The stabilization is stronger in cascade than random food webs. The present results suggest that parasites can greatly influence food web stability if parasite-induced diseases prevent host foraging activity. Parasite-induced infectious disease, by weaking species interactions, may play a key role in maintaining food webs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call