Abstract

This paper addresses the need for nonlinear programming algorithms that provide fast local convergence guarantees regardless of whether a problem is feasible or infeasible. We present a sequential quadratic programming method derived from an exact penalty approach that adjusts the penalty parameter automatically, when appropriate, to emphasize feasibility over optimality. The superlinear convergence of such an algorithm to an optimal solution is well known when a problem is feasible. The main contribution of this paper, however, is a set of conditions under which the superlinear convergence of the same type of algorithm to an infeasible stationary point can be guaranteed when a problem is infeasible. Numerical experiments illustrate the practical behavior of the method on feasible and infeasible problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.