Abstract

The Ts65Dn (Ts) mouse model of Down syndrome (DS) is exquisitely sensitive to an infantile spasms phenotype induced by γ-aminobutyric acidB receptor (GABAB R) agonists. The Ts mouse contains the core genomic triplication of the DS critical region, which includes 3 copies of the Kcnj6 gene that encodes the GABAB R-coupled G protein-coupled inward rectifying potassium channel subunit 2 (GIRK2) channel. We test the hypothesis that GIRK2 is necessary for the GABAB R agonist-induced infantile spasms phenotype in Ts. We assessed the result of either genetic or pharmacological knockdown of the GIRK2 channel in Ts brain upon the GABAB R agonist-induced infantile spasms phenotype in the Ts mouse model of DS. As well, we examined GABAB R currents in hippocampal neurons prepared from GIRK2-trisomic Ts control mice and GIRK2-disomic Ts mice in which Kcnj6 had been genetically knocked down from 3 to 2 copies. The reduction of the copy number of Kcnj6 in Ts mice rescued the GABAB R agonist-induced infantile spasms phenotype. There was an increase in GABAB R-mediated GIRK2 currents in GIRK2-trisomic Ts mouse hippocampal neurons, which were normalized in the GIRK2-disomic Ts mice. Similarly, pharmacological knockdown of the GIRK2 channel in Ts brain using the GIRK antagonist tertiapin-Q also rescued the GABAB R agonist-induced infantile spasms phenotype in Ts mutants. The GABAB R-coupled GIRK2 channel is necessary for the GABAB R agonist-induced infantile spasms phenotype in the Ts mouse and may represent a novel therapeutic target for the treatment of infantile spasms in DS. Ann Neurol 2016;80:511-521.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call