Abstract

Episodic memories formed during the first postnatal period are rapidly forgotten, a phenomenon known as infantile amnesia. In spite of this memory loss, early experiences influence adult behavior, raising the question of which mechanisms underlie infantile memories and amnesia. Here we show that in rats an experience learned during the infantile amnesia period is stored as a latent memory trace for a long time; indeed, a later reminder reinstates a robust, context-specific and long-lasting memory. The formation and storage of this latent memory requires the hippocampus, follows a sharp temporal boundary, and occurs through mechanisms typical of developmental critical periods, including brain-derived-neurotrophic-factor (BDNF)- and metabotropic-glutamate-receptor-5 (mGluR5)-dependent expression switch of the N-methyl-D-aspartate receptor subunits 2B-2A. BDNF or mGlur5 activation after training rescues the infantile amnesia. Thus, early episodic memories are not lost, but remain stored long-term. These data suggest that the hippocampus undergoes a developmental critical period to become functionally competent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.