Abstract

Within the infant-caregiver attachment system, the primary caregiver holds potent reward value to the infant, exhibited by infants’ strong preference for approach responses and proximity-seeking towards the mother. A less well-understood feature of the attachment figure is the caregiver’s ability to reduce fear via social buffering, commonly associated with the notion of a “safe haven” in the developmental literature. Evidence suggests this infant system overlaps with the neural network supporting social buffering (attenuation) of fear in the adults of many species, a network known to involve the prefrontal cortex (PFC). Here, using odor-shock conditioning in young developing rats, we assessed when the infant system transitions to the adult-like PFC-dependent social buffering of threat system. Rat pups were odor-shock conditioned (0.55 mA–0.6 mA) at either postnatal day (PN18; dependent on mother) or 28 (newly independent, weaned at PN23). Within each age group, the mother was present or absent during conditioning, with PFC assessment following acquisition using 14C 2-DG autoradiography and cue testing the following day. Since the human literature suggests poor attachment attenuates the mother’s ability to socially buffer the infants, half of the pups at each age were reared with an abusive mother from PN8–12. The results showed that for typical control rearing, the mother attenuated fear in both PN18 and PN28 pups, although the PFC [infralimbic (IL) and ventral prelimbic (vPL) cortices] was only engaged at PN28. Abuse rearing completely disrupted social buffering of pups by the mother at PN18. The results from PN28 pups showed that while the mother modulated learning in both control and abuse-reared pups, the behavioral and PFC effects were attenuated after maltreatment. Our data suggest that pups transition to the adult-like PFC social support circuit after independence from the mother (PN28), and this circuit remains functional after early-life trauma, although its effectiveness appears reduced. This is in sharp contrast to the effects of early life trauma during infancy, where social buffering of the infant is more robustly impacted. We suggest that the infant social buffering circuit is disengaged by early-life trauma, while the adolescent PFC-dependent social buffering circuit may use a safety signal with unreliable safety value.

Highlights

  • The mother and other significant caregivers serve as potent reward stimuli and induce robust proximity-seeking in the infant, regardless of the quality of care received

  • For PN18 controls (Figure 2A), there was no main effect of maternal presence (F(1,14) = 2.601, p = 0.129) but there was a main effect of cue presentation (F(6,84) = 37.90, p < 0.001) and a cue presentation by maternal presence interaction (F(6,84) = 4.567, p = 0.0005)

  • For the PN18 Low Bedding (LB) group (Figure 2B), there was no main effect of maternal presence (F(1,14) = 2.885, p = 0.112) but there was a main effect of cue presentation (F(6,84) = 50.66, p < 0.001) and a cue presentation by maternal presence interaction (F(6,84) = 5.563, p < 0.001)

Read more

Summary

Introduction

The mother and other significant caregivers serve as potent reward stimuli and induce robust proximity-seeking in the infant, regardless of the quality of care received. This phenomenon of social buffering of threat by the parent was first demonstrated in infant rats when the presence of the mother reduced the young infants’ responses to shock and blocked stress hormone release This system is strongly phylogenetically represented and has been shown in rodents (Stanton and Levine, 1985; Levine et al, 1988; Suchecki et al, 1993; Hennessy et al, 2006, 2009, 2015; Gunnar et al, 2015; Sullivan and Perry, 2015; Al Aïn et al, 2017; Opendak et al, 2019), nonhuman primates and children (Coe et al, 1978; Wiener et al, 1987; Nachmias et al, 1996; Hennessy et al, 2009; Tottenham et al, 2012, accepted; Gee et al, 2013a; Sanchez et al, 2015; Howell et al, 2017). This social buffering supports the role of the attachment figure as a regulator of the immature infant (Bowlby, 1982; Hofer, 1994; Sroufe, 2005; Blair and Raver, 2015; Chambers, 2017; Feldman, 2017; Perry et al, 2017)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.