Abstract

1. Stepping responses were studied in infants between the ages of 10 days and 10 months while they were supported to step on a slowly moving treadmill belt. Surface electromyography (EMG) from muscles in the lower limb, force exerted by the feet on the treadmill belt, and the motion of the lower limbs were recorded. 2. Two groups of infants were studied, those who had a small amount of daily practice in stepping and those who did not. Practice resulted in a dramatic increase in the incidence of stepping recorded in the laboratory, particularly for the periods between 1 and 6 months of age. 3. The majority of infants showed clear alternation between the flexor and extensor muscles during walking, regardless of age. Co-contraction between flexors and extensors, estimated by the overlap in area between rectified and smoothed EMG from a muscle pair, was greater for some muscle groups in the infant compared with the adult. 4. Practice resulted in a significantly lower co-contraction index for the tibialis anterior- quadriceps muscle pair. Practice did not affect the mean step cycle duration. 5. Infants of all ages could step at a range of treadmill speeds by adjusting their step cycle duration. The relationship between the treadmill speed and cycle duration was well fitted by a power function, similar to those reported for intact cats and adult humans. The change in step cycle duration resulted almost entirely from a change in the extensor burst duration, whereas the flexor burst duration remained constant. 6. Airstepping could be elicited in some infants. The cycle durations for airstepping were close to the shortest cycles recorded on the treadmill. 7. In conclusion, the system for generating rhythmic, alternating activity of the lower limbs for stepping is clearly developed by birth. The stepping is sustained and regular, particularly if stepping practice is incorporated briefly each day. The infant population provides a good subject pool for studying the afferent control of walking in the human, before cerebral influences are fully developed. The characteristics and maturity of the system remain to be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.