Abstract

Skull fractures are common injuries in young children, typically caused by accidental falls and child abuse. The paucity of detailed biomechanical data from real-world trauma in children has hampered development of biomechanical thresholds for skull fracture in infants. The objectives of this study were to identify biomechanical metrics to predict skull fracture, determine threshold values associated with fracture, and develop skull fracture risk curves for low-height falls in infants. To achieve these objectives, we utilized an integrated approach consisting of case evaluation, anthropomorphic reconstruction, and finite element simulation. Four biomechanical candidates for predicting skull fracture were identified (first principal stress, first principal strain, shear stress, and von Mises stress) and evaluated against well-witnessed falls in infants (0–6 months). Among the predictor candidates, first principal stress and strain correlated best with the occurrence of parietal skull fracture. The principal stress and strain thresholds associated with 50 and 95% probability of parietal skull fracture were 25.229 and 36.015 MPa and 0.0464 and 0.0699, respectively. Risk curves using these predictors determined that infant falls from 0.3 m had a low probability (0–54%) to result in parietal skull fracture, particularly with carpet impact (0–1%). Head-first falls from 0.9 m had a high probability of fracture (86–100%) for concrete impact and a moderate probability (34–81%) for carpet impact. Probabilities of fracture in 0.6 m falls were dependent on impact surface. Occipital impacts from 0.9 m onto the concrete also had the potential (27–90% probability) to generate parietal skull fracture. These data represent a multi-faceted biomechanical assessment of infant skull fracture risk and can assist in the differential diagnosis for head trauma in children.

Highlights

  • Falls are the leading causes of nonfatal, unintentional injuries in infants ≤ 1 year of age [1] as well as the leading cause of hospital emergency department visits across all age groups [2]

  • Int J Legal Med (2019) 133:847–862 understanding of the biomechanics of low-height falls in infants and associated skull fracture risk is critical for informing the differential diagnosis between accidental and abusive head injury etiologies, and for identifying strategies for injury mitigation in household and recreational settings

  • Given the paucity of documented pediatric accidental cases in the literature, the 11 well-witnessed, real-world infant falls in our clinical dataset, along with kinematics estimated from anthropomorphic surrogate event reconstructions and biomechanical parameters from finite element (FE) simulations, provide the biomechanics community with valuable data that can facilitate validation of future computational models of infant head injuries

Read more

Summary

Introduction

An accidental fall is the most common history provided for the mechanism of injury in infants diagnosed with abusive head trauma [3]. Retrospective studies are limited by the quality of the data, including the consistency and precision with which fall heights are estimated from incident descriptions. The exact positioning of the infants prior to dropping and detailed descriptions of storage conditions of the cadavers is not provided. Prange et al [17] and Loyd [18] performed drop tests of cadaver subjects from 0.15 and 0.3 m onto a metal anvil with five different head impact locations and observed no skull fractures in newborns but noted fractures in children 5–22 months of age

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.