Abstract

Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.