Abstract

BackgroundMalaria transmission reduction is a goal of many malaria control programmes. Little is known of how much mortality can be reduced by specific reductions in transmission. Verbal autopsy (VA) is widely used for estimating malaria specific mortality rates, but does not reliably distinguish malaria from other febrile illnesses. Overall malaria attributable mortality includes both direct and indirect deaths. It is unclear what proportion of the deaths averted by reducing malaria transmission are classified as malaria in VA.MethodsBoth all-cause, and cause-specific mortality reported by VA for children under 5 years of age, were assembled from the KEMRI/CDC health and demographic surveillance system in Siaya county, rural Western Kenya for the years 2002–2004. These were linked to household-specific estimates of the Plasmodium falciparum entomological inoculation rate (EIR) based on high resolution spatio-temporal geostatistical modelling of entomological data. All-cause and malaria specific mortality (by VA), were analysed in relation to EIR, insecticide-treated net use (ITN), socioeconomic status (SES) and parameters describing space–time correlation. Time at risk for each child was analysed using Bayesian geostatistical Cox proportional hazard models, with time-dependent covariates. The outputs were used to estimate the diagnostic performance of VA in measuring mortality that can be attributed to malaria exposure.ResultsThe overall under-five mortality rate was 80 per 1000 person-years during the study period. Eighty-one percent of the total deaths were assigned causes of death by VA, with malaria assigned as the main cause of death except in the neonatal period. Although no trend was observed in malaria-specific mortality assessed by VA, ITN use was associated with reduced all-cause mortality in infants (hazard ratio 0.15, 95% CI 0.02, 0.63) and the EIR was strongly associated with both all-cause and malaria-specific mortality. 48.2% of the deaths could be attributed to malaria by analysing the exposure–response relationship, though only 20.5% of VAs assigned malaria as the cause and the sensitivity of VAs was estimated to be only 26%. Although VAs assigned some deaths to malaria even in areas where there was estimated to be no exposure, the specificity of the VAs was estimated to be 85%.ConclusionInterventions that reduce P. falciparum transmission intensity will not only significantly reduce malaria-diagnosed mortality, but also mortality assigned to other causes in under-5 year old children in endemic areas. In this setting, the VA tool based on clinician review substantially underestimates the number of deaths that could be averted by reducing malaria exposure in childhood, but has a reasonably high specificity. This suggests that malaria transmission-reducing interventions such as ITNs can potentially reduce overall child mortality by as much as twice the total direct malaria burden estimated from VAs.

Highlights

  • Malaria transmission reduction is a goal of many malaria control programmes

  • Most of the time at risk was in the entomological inoculation rate (EIR) category of 1–5 infectious bites per person per year, but there was substantial time at risk and deaths at lower and higher EIRs than this

  • Twenty percent of the deaths were reported in households in the poorest wealth quintile compared to 18% in least poor households

Read more

Summary

Introduction

Little is known of how much mortality can be reduced by specific reductions in transmission. Overall malaria attributable mortality includes both direct and indirect deaths. It is unclear what proportion of the deaths averted by reducing malaria transmission are classified as malaria in VA. Most under-five (childhood) deaths have been attributed to pneumonia, diarrhoea, malaria, neonatal sepsis, malnutrition, preterm delivery and asphyxia at birth [2]. Most of these conditions/diseases are either preventable or treatable with minimum interventions [3]. Malaria/or malaria associated conditions are still thought to be one of the leading causes of pediatric morbidity and mortality [9], but there is controversy about the overall size of the remaining burden [10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.