Abstract
In this article, we analyze the Petrov‐Galerkin immersed finite element method (PG‐IFEM) when applied to one‐dimensional elliptic interface problems. In the PG‐IFEM (T. Hou, X. Wu and Y. Zhang, Commun. Math. Sci., 2 (2004), 185‐205, and S. Hou and X. Liu, J. Comput. Phys., 202 (2005), 411‐445), the classic immersed finite element (IFE) space was taken as the trial space while the conforming linear finite element space was taken as the test space. We first prove the inf‐sup condition of the PG‐IFEM and then show the optimal error estimate in the energy norm. We also show the optimal estimate of the condition number of the stiffness matrix. The results are extended to two dimensional problems in a special case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.