Abstract

A novel inexpensive affinity purification technology is described based on recombinant expression in Escherichia coli of the polypeptide or protein target fused through its N-terminus to TmXyn10ACBM9-2 (CBM9), the C-terminal family 9 carbohydrate-binding module of xylanase 10A from Thermotoga maritima. Measured association constants ( K a) for adsorption of CBM9 to insoluble allomorphs of cellulose are between 2×10 5 and 8×10 6 M −1. CBM9 also binds a range of soluble sugars, including glucose. As a result, a 1 M glucose solution is effective in eluting CBM9 and CBM9-tagged fusion proteins from a very inexpensive commercially-available cellulose-based capture column. A processing site is encoded at the C-terminus of the tag to facilitate its rapid and quantitative removal by Factor X a to recover the desired target protein sequence following affinity purification. Fusion of the CBM9 affinity tag to the N-terminus of green fluorescent protein (GFP) from the jellyfish, Aquorin victoria, is shown to yield >200 mg l −1 of expressed soluble fusion protein that can be affinity separated from clarified cell lysate to a purity of >95% at a yield of 86%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.