Abstract

Stochastic nonconvex optimization problems with nonlinear constraints have a broad range of applications in intelligent transportation, cyber-security, and smart grids. In this paper, first, we propose an inexact-proximal accelerated gradient method to solve a nonconvex stochastic composite optimization problem where the objective is the sum of smooth and nonsmooth functions, the constraint functions are assumed to be deterministic and the solution to the proximal map of the nonsmooth part is calculated inexactly at each iteration. We demonstrate an asymptotic sublinear rate of convergence for stochastic settings using increasing sample-size considering the error in the proximal operator diminishes at an appropriate rate. Then we customize the proposed method for solving stochastic nonconvex optimization problems with nonlinear constraints and demonstrate a convergence rate guarantee. Numerical results show the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.