Abstract

ABSTRACT In this paper, we propose a novel primal–dual inexact gradient projection method for nonlinear optimization problems with convex-set constraint. This method only needs inexact computation of the projections onto the convex set for each iteration, consequently reducing the computational cost for projections per iteration. This feature is attractive especially for solving problems where the projections are computationally not easy to calculate. Global convergence guarantee and ergodic convergence rate of the optimality residual are provided under loose assumptions. We apply our proposed strategy to -ball constrained problems. Numerical results exhibit that our inexact gradient projection methods for solving -ball constrained problems are more efficient than the exact methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.