Abstract

Self-similar topology, which can be characterized as power law size distribution, has been found in diverse tree networks ranging from river networks to taxonomic trees. In this study, we find that the statistical self-similar topology is an inevitable consequence of any full binary tree organization. We show this by coding a binary tree as a unique bifurcation string. This coding scheme allows us to investigate trees over the realm from deterministic to entirely random trees. To obtain partial random trees, partial random perturbation is added to the deterministic trees by an operator similar to that used in genetic algorithms. Our analysis shows that the hierarchical density of binary trees is more diverse than has been described in earlier studies. We find that the connectivity structure of river networks is far from strict self-similar trees. On the other hand, organization of some social networks is close to deterministic supercritical trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.