Abstract
The integration of technology into training and competition sport settings is becoming more commonplace. Inertial sensors are one technology being used for performance monitoring. Within combat sports, there is an emerging trend to use this type of technology; however, the use and selection of this technology for combat sports has not been reviewed. To address this gap, a systematic literature review for combat sport athlete performance analysis was conducted. A total of 36 records were included for review, demonstrating that inertial measurements were predominately used for measuring strike quality. The methodology for both selecting and implementing technology appeared ad-hoc, with no guidelines for appropriately analysing the results. This review summarises a framework of best practice for selecting and implementing inertial sensor technology for evaluating combat sport performance. It is envisaged that this review will act as a guide for future research into applying technology to combat sport.
Highlights
In recent years, technological developments have resulted in the production of small, unobtrusive wearable inertial sensors
The results demonstrated a significant correlation between performance in the counter-movement jump (CMJ) and the number of Bandal chagui strikes thrown in 30 s (r = 0.59) and the mean anaerobic power (0.56) registered in the TSAT
This review demonstrates that inertial sensors can be used as a performance assessment tool in combat sports
Summary
Technological developments have resulted in the production of small, unobtrusive wearable inertial sensors. Such sensors directly measure movement both in the laboratory and in the field of play. Microelectromechanical systems (MEMS) are chip-level devices based on change in inertial movement of silicon-based arms acting as a mass and spring. From this movement, the acceleration and rotation of the device can be measured, logged and transmitted off the body [1,2]. There are additional constraints as the electronics systems must survive high impact accelerations, environmental effects of temperature and humidity, wireless connectivity problems due to multiple rotations of the body, a very high sampling rate to accommodate under-sampling of high impact events, and the shape and placement of the sensors must be such that a direct hit on the sensor will not injure the participant and will not undermine the operational characteristics of the devices
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.