Abstract
Nowadays, an increasing usage of autonomous mobile robots in outdoor applications can be noticed. Identification of the terrain type is very important for efficient navigation. In this paper, a novel method is proposed for terrain classification in the case of wheeled mobile robots. The classification algorithm uses frequency domain features, which are extracted in fixed-size windows, and Multi-Layer Perceptron (MLP) neural networks as classifiers. Data from inertial sensors were collected for different outdoor terrain types using a prototype measurement system. The data of the accelerometer and the gyroscope were tested separately and together, and different processing window sizes were also applied. The achieved results show that above 99% classification efficiency can be achieved using the collected data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.