Abstract

Given the popularity of running-based sports and the rapid development of Micro-electromechanical systems (MEMS), portable wireless sensors can provide in-field monitoring and analysis of running gait parameters during exercise. This paper proposed an intelligent analysis system from wireless micro–Inertial Measurement Unit (IMU) data to estimate contact time (CT) and flight time (FT) during running based on gyroscope and accelerometer sensors in a single location (ankle). Furthermore, a pre-processing system that detected the running period was introduced to analyse and enhance CT and FT detection accuracy and reduce noise. Results showed pre-processing successfully detected the designated running periods to remove noise of non-running periods. Furthermore, accelerometer and gyroscope algorithms showed good consistency within 95% confidence interval, and average absolute error of 31.53 ms and 24.77 ms, respectively. In turn, the combined system obtained a consistency of 84–100% agreement within tolerance values of 50 ms and 30 ms, respectively. Interestingly, both accuracy and consistency showed a decreasing trend as speed increased (36% at high-speed fore-foot strike). Successful CT and FT detection and output validation with consistency checking algorithms make in-field measurement of running gait possible using ankle-worn IMU sensors. Accordingly, accurate IMU-based gait analysis from gyroscope and accelerometer information can inform future research on in-field gait analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call