Abstract

Objective: To determine if the attractor for acceleration gait data is similar among healthy persons defining a reference attractor; if exercise-induced changes in the attractor in patients with symptomatic lumbar spinal stenosis (sLSS) are greater than in healthy persons; and if the exercise-induced changes in the attractor are affected by surgical treatment.Methods: Twenty-four healthy subjects and 19 patients with sLSS completed a 6-min walk test (6MWT) on a 30-m walkway. Gait data were collected using inertial sensors (RehaGait®;) capturing 3-dimensional foot accelerations. Attractor analysis was used to quantify changes in low-pass filtered acceleration pattern (δM) and variability (δD) and their combination as attractor-based index (δF = δM* δD) between the first and last 30 m of walking. These parameters were compared within healthy persons and patients with sLSS (preoperatively and 10 weeks and 12 months postoperatively) and between healthy persons and patients with sLSS. The variability in the attractor pattern among healthy persons was assessed as the standard deviation of the individual attractors.Results: The attractor pattern differed greatly among healthy persons. The variability in the attractor between subjects was about three times higher than the variability around the attractor within subject. The change in gait pattern and variability during the 6MWT did not differ significantly in patients with sLSS between baseline and follow-up but differed significantly compared to healthy persons.Discussion: The attractor for acceleration data varied largely among healthy subjects, and hence a reference attractor could not be generated. Moreover, the change in the attractor and its variability during the 6MWT differed between patients and elderly healthy persons but not between repeated assessments. Hence, the attractor based on low-pass filtered signals as used in this study may reflect pathology specific differences in gait characteristics but does not appear to be sufficiently sensitive to serve as outcome parameter of decompression surgery in patients with sLSS.

Highlights

  • IntroductionThe interrelationship between structural aspects of the musculoskeletal and neuromuscular systems determine performance characteristics that are critical for facilitating normal movement conditions of the entire physiological range (Komi, 1984)

  • Human function is determined by the status of the neuromusculoskeletal system

  • The objectives of this study were to determine if the attractor for acceleration gait data is similar among healthy persons defining a reference attractor; if exercise-induced changes in the attractor in patients with sLSS are greater than in healthy persons; and if the exercise-induced changes in the attractor are affected by surgical treatment

Read more

Summary

Introduction

The interrelationship between structural aspects of the musculoskeletal and neuromuscular systems determine performance characteristics that are critical for facilitating normal movement conditions of the entire physiological range (Komi, 1984). Many orthopedic diseases or conditions are associated with an abnormal, asymmetric, or variable gait pattern (Pirker and Katzenschlager, 2017). LSS associated radiating leg pain or pain in the lower back and/or the buttocks (Kreiner et al, 2013) frequently leads to a compromised ability to walk (Tong et al, 2007) resulting in abnormal or variable gait patterns. Studying the effects of neuromuscular impairments such as those caused by LSS on ambulatory function during prolonged walking or specific functional tests such as the 6-min walk test (6MWT) provides important insights into normal and pathological neuromuscular function and performance. Detailed knowledge on normal function, gait patterns, and their variability in a healthy population is a prerequisite for elucidating pathological function and gait patterns

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.