Abstract

By arranging a large number of inertial sensors in an array and fusing their measurements, it is possible to create inertial sensor assemblies with a high performance-to-price ratio. Recently, a maximum likelihood estimator for fusing inertial array measurements collected at a given sampling instance was developed. In this paper, the maximum likelihood estimator is extended by introducing a motion model and deriving a maximum a posteriori estimator that jointly estimates the array dynamics at multiple sampling instances. Simulation examples are used to demonstrate that the proposed sensor fusion method have the potential to yield significant improvements in estimation accuracy. Further, by including the motion model, we resolve the sign ambiguity of gyro-free implementations, and thereby open up for implementations based on accelerometer-only arrays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call