Abstract
Let $G$ be a group and $p$ be an endomorphism of $G$. A subgroup $H$ of $G$ is called $p$-inert if $H^pcap H$ has finite index in the image $H^p$. The subgroups that are $p$-inert for all inner automorphisms of $G$ are widely known and studied in the literature, under the name inert subgroups. The related notion of inertial endomorphism, namely an endomorphism $p$ such that all subgroups of $G$ are $p$-inert, was introduced in cite{DR1} and thoroughly studied in cite{DR2,DR4}. The ``dual notion of fully inert subgroup, namely a subgroup that is $p$-inert for all endomorphisms of an abelian group $A$, was introduced in cite{DGSV} and further studied in cite{Ch+, DSZ,GSZ}. The goal of this paper is to give an overview of up-to-date known results, as well as some new ones, and show how some applications of the concept of inert subgroup fit in the same picture even if they arise in different areas of algebra. We survey on classical and recent results on groups whose inner automorphisms are inertial. Moreover, we show how inert subgroups naturally appear in the realm of locally compact topological groups or locally linearly compact topological vector spaces, and can be helpful for the computation of the algebraic entropy of continuous endomorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.