Abstract

We study collections of heavy and light small spherical particles initially well mixed with each other, subjected to linear (Stokes) drag force and gravity, and falling through a fluid turbulence. We introduce the segregation power spectrum, which we use to define the segregation length scale. Kinematic simulation predicts that the turbulence can segregate heavy and light falling particles and leads to a well-defined segregation length scale. The properties of this length scale and of the segregation power spectrum used to define it are discussed and, where possible, explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.