Abstract

Abstract This study investigates the use of linear-regression-based identification in rigid multibody system applications. A multibody system model, originally described with differential-algebraic equations (DAE), is transformed into a set of ordinary differential equations using coordinate partitioning. This allows the identification framework (where the system is described with ordinary differential equations) to be applied to rigid multibody systems described with nonminimal coordinates. The methodology is demonstrated via numerical and experimental validation on a slider–crank mechanism. The results show that the presented methodology is capable of accurately identifying the system's inertial parameters even with a short motion trajectory used for training. The presented linear-regression-based identification approach opens new opportunities to develop more accurate multibody models. The resulting updated multibody models can be considered especially useful for state-estimation and the control of multibody systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call