Abstract

Wearable inertial measurement units (IMUs) can be utilized as an alternative to optical motion capture as a method of measuring joint angles. These sensors require functional calibration prior to data collection, known as sensor-to-segment calibration. This study aims to evaluate previously described sensor-to-segment calibration methods to measure joint angle range of motion (ROM) during highly dynamic sports-related movements. Seven calibration methods were selected to compare lower extremity ROM measured using IMUs to an optical motion capture system. The accuracy of ROM measurements for each calibration method varied across joints and sport-specific tasks, with absolute mean differences between IMU measurement and motion capture measurement ranging from <0.1° to 24.1°. Fewer significant differences were observed at the pelvis than at the hip, knee, or ankle across all tasks. For each task, one or more calibration movements demonstrated non-significant differences in ROM for at least nine out of the twelve ROM variables. These results suggest that IMUs may be a viable alternative to optical motion capture for sport-specific lower-extremity ROM measurement, although the sensor-to-segment calibration methods used should be selected based on the specific tasks and variables of interest for a given application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call