Abstract
Our aim in this article is to derive an existence theorem of inertial manifolds for fairly general equations with a self-adjoint or nonself-adjoint linear operator in a Banach space setting. A sharp form of the spectral gap condition is given. Many other properties are proven including an interesting characterization of the inertial manifold and the normal hyperbolicity of the inertial manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.