Abstract

Lévy flight with nonlinear friction is studied. Due to the occurrence of extremely long jumps Lévy flights often possess infinite variance and are physically problematic if describing the dynamics of a particle of finite mass. However, by introducing nonlinear friction, we show that the stochastic process subject to Lévy noise exhibits finite variance, leading to a well-defined kinetic energy. In the force-free field, normal diffusion behavior is observed and the diffusion coefficient decreases with Lévy index μ. Furthermore, we find a kinetic resonance of the particle in the harmonic potential to the external oscillating field in the generally underdamped region and the value of the linear friction γ0 determines whether resonance occurs or not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.