Abstract
The global proliferation of renewable energy drastically altered the characteristics of power systems. Integration of clean energy sources reduces the inherent rotational inertia, making the system precarious and susceptible to various disturbances. The major challenges encountered are fast frequency fluctuations, voltage fluctuations, high rate of change of frequency (RoCoF), and frequency nadir. In order to address and adapt to a future low-inertia scenario, it is crucial to understand the effect of inertia on various parameters. This paper introduces a comprehensive review of the fundamental aspects of inertia and challenges that arise due to the reduction in inertia. Researchers have tackled this issue by employing various virtual inertia (VI) emulation techniques, which also have been extensively reviewed in the literature along with their merits, limitations, and recent developments. The impact of RES penetration on system dynamics is analyzed by simulating an IEEE-9 bus system with renewable energy source (RES) in MATLAB/Simulink. Furthermore, a three-phase fault is also introduced, to emphasize the effect of reduced inertia by observing the rotor angle and frequency deviation. The results validate that RES integration and fault location are observed to have a significant impact on stability parameters, making them extremely unstable.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Power Electronics and Drive Systems (IJPEDS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.