Abstract

Abstract A horizontal shear flow having a Rossby number, Ro, greater than unity on a rotating plane can become unstable when its shear value is less than −f, the Coriolis frequency. In this paper, this instability is investigated for an O(10 km) submesoscale, sinusoidal shear flow in a thin homogeneous fluid layer as in an oceanic mixed layer or a shallow sea. The most unstable mode is shown by a linear analysis to occur in a narrow localized region centered around the maximum anticyclonic current shear. However, nonlinear numerical calculations show that the instability can grow to encompass both unstable and stable regions of the current. A consequence of this finite-amplitude evolution is the formation of surface convergence/shear fronts. The possibility that inertial instability mechanism is a source of some surface convergence/shear features seen in remote sensing images of the sea surface is discussed. A comparison is made with the shear-flow instability that can occur concurrently in a sinusoidal shear current, and inertial instability is shown to be the dominant instability mechanism in the immediate range above Ro=2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.